传播模型已被证明对各种应用程序有效,例如图像,音频和图形生成。其他重要的应用是图像超分辨率和逆问题的解决方案。最近,一些作品使用了随机微分方程(SDE)将扩散模型推广到连续时间。在这项工作中,我们介绍SDE来生成超分辨率的面部图像。据我们所知,这是SDE首次用于此类应用程序。所提出的方法比基于扩散模型的现有超级分辨率方法提供了改进的峰值信噪比(PSNR),结构相似性指数(SSIM)和一致性。特别是,我们还评估了该方法在面部识别任务中的潜在应用。通用面部特征提取器用于比较超分辨率图像与地面真相,并获得了与其他方法相比,获得了卓越的结果。我们的代码可在https://github.com/marcelowds/sr-sde上公开获取
translated by 谷歌翻译
Dataset scaling, also known as normalization, is an essential preprocessing step in a machine learning pipeline. It is aimed at adjusting attributes scales in a way that they all vary within the same range. This transformation is known to improve the performance of classification models, but there are several scaling techniques to choose from, and this choice is not generally done carefully. In this paper, we execute a broad experiment comparing the impact of 5 scaling techniques on the performances of 20 classification algorithms among monolithic and ensemble models, applying them to 82 publicly available datasets with varying imbalance ratios. Results show that the choice of scaling technique matters for classification performance, and the performance difference between the best and the worst scaling technique is relevant and statistically significant in most cases. They also indicate that choosing an inadequate technique can be more detrimental to classification performance than not scaling the data at all. We also show how the performance variation of an ensemble model, considering different scaling techniques, tends to be dictated by that of its base model. Finally, we discuss the relationship between a model's sensitivity to the choice of scaling technique and its performance and provide insights into its applicability on different model deployment scenarios. Full results and source code for the experiments in this paper are available in a GitHub repository.\footnote{https://github.com/amorimlb/scaling\_matters}
translated by 谷歌翻译
可见的红外人员重新识别(REID)旨在认识到RGB和IR摄像机网络中的同一个人。一些深度学习(DL)模型已直接纳入了两种模式,以在联合表示空间中区分人。但是,由于RGB和IR模式之间数据分布的较大域转移,因此这个跨模式的REID问题仍然具有挑战性。 %本文引入了一种新的方法,用于创建中间虚拟域,该域在训练过程中充当两个主要领域(即RGB和IR模式)之间的桥梁。该中间域被视为在测试时间无法获得的特权信息(PI),并允许将此跨模式匹配任务制定为在特权信息(LUPI)下学习的问题。我们设计了一种新方法,以在可见的和红外域之间生成图像,这些方法提供了其他信息,以通过中间域的适应来训练深层REID模型。特别是,通过在训练过程中采用无色和多步三重态损失目标,我们的方法提供了通用的特征表示空间,这些空间对大型可见的红外域移动具有牢固的功能。 %关于挑战性可见红外REID数据集的实验结果表明,我们提出的方法始终提高匹配的准确性,而在测试时没有任何计算开销。该代码可在:\ href {https://github.com/alehdaghi/cross-modal-re-id-iid-via-lupi} {https://github.com/alehdaghi/alehdaghi/cross-modal-re-re-id-i-id--i- id-i--i- id-id-i--i--via-lupi} { Via-Lupi}
translated by 谷歌翻译
阶级失衡是一种以使学习对分类模型更具挑战性的特征,因为它们可能最终会偏向多数级别。在不平衡学习的背景下,基于整体的方法中的一种有希望的方法是动态选择(DS)。 DS技术根据整体中的分类器的一个子集,根据其在查询周围区域中的估计能力标记每个给定的样本。由于在选择方案中只考虑了一个小区域,因此全球类别不成比例可能对系统的性能产生较小的影响。但是,本地类重叠的存在可能会严重阻碍DS技术的性能,而不是分布不平衡,因为它不仅加剧了代表不足的影响,而且还引入了能力估计过程中模棱两可且可能不可靠的样本。因此,在这项工作中,我们提出了一种DS技术,该技术试图最大程度地减少分类器选择过程中本地类别重叠的影响。所提出的方法迭代从目标区域中删除了实例被认为是最难分类的实例,直到分类器被认为有能力标记查询样品为止。使用实例硬度度量量化本地类重叠的实例硬度度量来表征已知样品。实验结果表明,该提出的技术可以显着胜过基线以及其他几种DS技术,这表明其适合处理类别不足的班级和重叠的适用性。此外,当使用标记的集合的重新采样,重叠版本较少的版本时,该技术仍会产生竞争结果,特别是在重叠区域中少数少数族类样本的问题上。可在https://github.com/marianaasouza/lords上找到代码。
translated by 谷歌翻译
尽管深度学习架构最近取得了成功,但在现实词应用程序中,人重新识别(REID)仍然是一个具有挑战性的问题。最近,已经提出了几种无监督的单目标域适应性(STDA)方法,以限制源和目标视频数据之间通常发生的域移位引起的REID准确性下降。鉴于人REID数据的多模式性质(由于跨摄像头观点和捕获条件的变化),训练常见的CNN主链来解决跨多个目标域的域移动,可以为实时REID应用程序提供有效的解决方案。尽管在REID文献中尚未广泛解决多目标域的适应性(MTDA),但一种直接的方法包括混合不同的目标数据集,并在混合物上执行STDA以训练公共CNN。但是,这种方法可能导致概括不佳,尤其是在融合越来越多的不同目标域来训练较小的CNN时。为了减轻此问题,我们基于知识蒸馏(KD-REID)引入了一种新的MTDA方法,该方法适用于实时人员REID应用。我们的方法通过从多个专业的教师CNN中蒸馏出来,适应了目标域上常见的轻型学生骨干CNN,每个CNN都适用于特定目标域的数据。对几个具有挑战性的人REID数据集进行的广泛实验表明,我们的方法优于MTDA的最先进方法,包括混合方法,尤其是在训练像OSNET这样的紧凑型CNN骨架时。结果表明,我们的灵活MTDA方法可用于设计成本效益的REID系统,以实时视频监视应用程序。
translated by 谷歌翻译
图形神经网络(GNNS)是由图形卷积和叉指非线性组成的层组成的深度卷积架构。由于其不变性和稳定性属性,GNN在网络数据的学习陈述中被证明是成功的。但是,训练它们需要矩阵计算,这对于大图可能是昂贵的。为了解决这个限制,我们研究了GNN横跨图形转移的能力。我们考虑图形,这是加权和随机图形的图形限制和生成模型,以定义图形卷积和GNNS - Graphon卷曲和Graphon神经网络(WNNS)的限制对象 - 我们用作图形卷曲的生成模型和GNNS。我们表明,这些石墨源区和WNN可以通过图形滤波器和来自加权和随机图中的它们采样的GNN来近似。使用这些结果,我们将导出误差界限,用于跨越此类图形传输图形过滤器和GNN。这些界限表明,可转换性随着图尺寸的增加而增加,并且揭示了在GNN中的可转换性和光谱分辨率之间的折衷,其被点亮的非线性缓解。这些发现经验在电影推荐和分散机器人控制中的数值实验中进行了经验验证。
translated by 谷歌翻译
尽管学习已成为现代信息处理的核心组成部分,但现在有足够的证据表明它可以导致偏见,不安全和有偏见的系统。因此,对学习要求施加要求至关重要,尤其是在达到社会,工业和医疗领域的关键应用程序时。但是,大多数现代统计问题的非跨性别性只有通过限制引入而加剧。尽管通常可以使用经验风险最小化来学习良好的无约束解决方案,即使获得满足统计约束的模型也可能具有挑战性。更重要的是,一个好。在本文中,我们通过在经验双重领域中学习来克服这个问题,在经验的双重领域中,统计学上的统计学习问题变得不受限制和确定性。我们通过界定经验二元性差距来分析这种方法的概括特性 - 即,我们的近似,可拖动解决方案与原始(非凸)统计问题的解决方案之间的差异 - 并提供实用的约束学习算法。这些结果建立了与经典学习理论的约束,从而可以明确地在学习中使用约束。我们说明了这种理论和算法受到速率受限的学习应用,这是在公平和对抗性鲁棒性中产生的。
translated by 谷歌翻译
在本文中,我们研究了加强学习问题的安全政策的学习。这是,我们的目标是控制我们不知道过渡概率的马尔可夫决策过程(MDP),但我们通过经验访问样品轨迹。我们将安全性定义为在操作时间内具有高概率的期望安全集中的代理。因此,我们考虑受限制的MDP,其中限制是概率。由于没有直接的方式来优化关于加强学习框架中的概率约束的政策,因此我们提出了对问题的遍历松弛。拟议的放松的优点是三倍。 (i)安全保障在集界任务的情况下保持,并且它们保持在一个给定的时间范围内,以继续进行任务。 (ii)如果政策的参数化足够丰富,则约束优化问题尽管其非凸起具有任意小的二元间隙。 (iii)可以使用标准策略梯度结果和随机近似工具容易地计算与安全学习问题相关的拉格朗日的梯度。利用这些优势,我们建立了原始双算法能够找到安全和最佳的政策。我们在连续域中的导航任务中测试所提出的方法。数值结果表明,我们的算法能够将策略动态调整到环境和所需的安全水平。
translated by 谷歌翻译
We derive a set of causal deep neural networks whose architectures are a consequence of tensor (multilinear) factor analysis. Forward causal questions are addressed with a neural network architecture composed of causal capsules and a tensor transformer. The former estimate a set of latent variables that represent the causal factors, and the latter governs their interaction. Causal capsules and tensor transformers may be implemented using shallow autoencoders, but for a scalable architecture we employ block algebra and derive a deep neural network composed of a hierarchy of autoencoders. An interleaved kernel hierarchy preprocesses the data resulting in a hierarchy of kernel tensor factor models. Inverse causal questions are addressed with a neural network that implements multilinear projection and estimates the causes of effects. As an alternative to aggressive bottleneck dimension reduction or regularized regression that may camouflage an inherently underdetermined inverse problem, we prescribe modeling different aspects of the mechanism of data formation with piecewise tensor models whose multilinear projections are well-defined and produce multiple candidate solutions. Our forward and inverse neural network architectures are suitable for asynchronous parallel computation.
translated by 谷歌翻译
User equipment is one of the main bottlenecks facing the gaming industry nowadays. The extremely realistic games which are currently available trigger high computational requirements of the user devices to run games. As a consequence, the game industry has proposed the concept of Cloud Gaming, a paradigm that improves gaming experience in reduced hardware devices. To this end, games are hosted on remote servers, relegating users' devices to play only the role of a peripheral for interacting with the game. However, this paradigm overloads the communication links connecting the users with the cloud. Therefore, service experience becomes highly dependent on network connectivity. To overcome this, Cloud Gaming will be boosted by the promised performance of 5G and future 6G networks, together with the flexibility provided by mobility in multi-RAT scenarios, such as WiFi. In this scope, the present work proposes a framework for measuring and estimating the main E2E metrics of the Cloud Gaming service, namely KQIs. In addition, different machine learning techniques are assessed for predicting KQIs related to Cloud Gaming user's experience. To this end, the main key quality indicators (KQIs) of the service such as input lag, freeze percent or perceived video frame rate are collected in a real environment. Based on these, results show that machine learning techniques provide a good estimation of these indicators solely from network-based metrics. This is considered a valuable asset to guide the delivery of Cloud Gaming services through cellular communications networks even without access to the user's device, as it is expected for telecom operators.
translated by 谷歌翻译